UNIVERSIDADE FEDERAL DE SANTA CATARINA CENTRO TECNO LÓGICO DEPARTAMENTO DE ENGENHARIA CIVIL

Núcleo de Pesquisa em Construção (NPC) / www.npc.ufsc.br
Laboratório de Eficiência Energética em Edificações (LabEEE) / www.labeee.ufsc.br

METODOLOGIA UTILIZADA NA ELABORAÇÃO DA BIBLIOTECA DE MATERIAIS E COMPONENTES CONSTRUTIVOS BRASILEIROS PARA SIMULAÇÕES NO VISUALDOE-3.1

Autores: Martín Ordenes, Eng. Civil

Aldomar Pedrini, PhD Enedir Ghisi, PhD Roberto Lamberts, PhD

Florianópolis, Setembro de 2003.

ÍNDICE

1. INTRODUÇÃO	3
2. OBJETIVO	4
3. METODOLOGIA	4
3.1. MATERIAIS E COMPONENTES CONSTRUTIVOS NO VISUALDOE	4
3.2. METODOLOGIA PARA PAREDES	
3.3. METODOLOGIA PARA COBERTURAS	7
3.4. METODOLOGIA PARA PISOS	7
3.5. Exemplo de cálculo	8
4. USO E CONTEÚDO DA BIBLIOTECA	10
5. CONCLUSÕES	14
6. REFERÊNCIAS BIBLIOGRÁFICAS	15

1. Introdução

Esse relatório interno descreve a caracterização de materiais e de componentes construtivos nacionais para o programa VisualDOE, os quais estão inseridos nos arquivos do tipo biblioteca (*.lib) e *templates* (*.gSI). Os arquivos digitais são específicos para a versão VisualDOE 3.1, entretanto os dados documentados nesse relatório podem ser aplicados em outros programas.

O VisualDOE, assim como qualquer outro programa de simulação termo-energética de edificações, reproduz características de edificações típicas de seu país de origem. Essa regionalidade pode comprometer o processo de modelagem à medida que o programa adota variáveis automaticamente enquanto se desenvolve a modelagem (recurso comum para otimizar o processo). Dessa forma, a ausência de uma biblioteca com informações dos principais sistemas construtivos nacionais implica em mais tempo de modelagem porque cabe ao usuário criá-los, aumentando também as chances de erros durante o processo.

Para corrigir essa limitação do programa e estimular o emprego adequado de materiais nacionais em simulações, esse relatório interno apresenta uma revisão da biblioteca adaptada à realidade brasileira, originalmente elaborada por GHISI & GRASSO (1997), com materiais e componentes comumente utilizados e com propriedades físicas registradas na literatura e normas do país. Neste sentido, o processo de cálculo dos elementos da biblioteca brasileira segue a metodologia proposta pelo projeto de norma de desempenho térmico de edificações (ABNT NBR 15220-2, 2003).

No entanto, o método definido pelo VisualDOE para elaborar os componentes construtivos apresenta certas limitações para desenvolver os modelos de materiais e componentes. A principal dificuldade é que o programa considera todos os componentes formados por camadas transversais ao fluxo de calor, não permitindo o cálculo de resistências térmicas em paralelo.

Outra consideração importante, descoberta na metodologia de trabalho do VisualDOE, é que o programa apresenta ao usuário uma transmitância térmica (*Ufactor*), que inclui parâmetros diferentes dos considerados nos cálculos de transmitância térmica proposto pelo projeto de norma (ABNT NBR 15220-2, 2003). O valor mostrado pelo programa como *Ufactor* (Figura 1), considera somente a resistência térmica do componente e a resistência térmica superficial interna, enquanto no projeto de norma a transmitância térmica é definida considerando a resistência térmica superficial externa, a resistência térmica do componente e a resistência térmica superficial interna. Embora o VisualDOE não inclua a resistência térmica superficial externa no *Ufactor*, ele a considera nos seus cálculos de simulação. Desta forma, os cálculos definidos para criar os elementos da biblioteca trabalham exclusivamente sobre a resistência térmica do componente (também chamada resistência térmica de superfície à superfície), deixando as resistências superficiais por conta das rotinas de cálculo do VisualDOE.

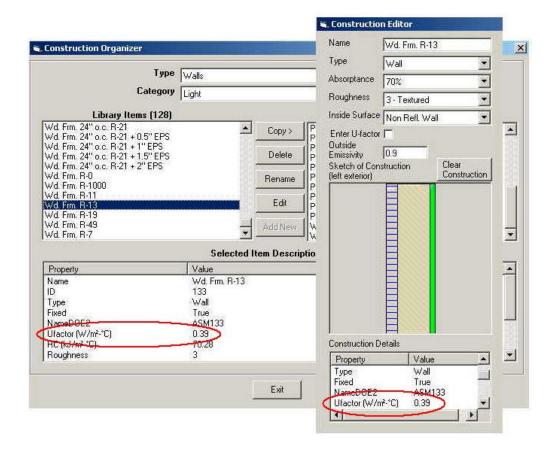


Figura 1. Transmitância térmica (*Ufactor*) apresentada pelo VisualDOE.

2. Objetivo

O principal objetivo deste trabalho é apresentar a metodologia adotada na elaboração da biblioteca de materiais e componentes do VisualDOE adequados à situação brasileira. Intenciona-se também a ajudar os usuários do VisualDOE a entender mais facilmente as características dos dados que são usados nas simulações e assim ter uma compreensão mais abrangente do modelo criado.

3. Metodologia

3.1. Materiais e componentes construtivos no VisualDOE

O programa utiliza um esquema de classificação em vários grupos chamados *Organizers* para manipular os elementos no projeto e na biblioteca. Assim, o VisualDOE organiza os elementos de entrada em aberturas (*openings*), vidros (*glazings*), construções ou componentes (*constructions*), materiais (*materials*), utilização (*occupancies*), padrões de uso (*schedules*), e tarifas (*utility rates*). Em cada um deles, o VisualDOE permite salvar itens na biblioteca para serem usados nos projetos quando for necessário.

A biblioteca criada no LabEEE inclui uma lista de materiais opacos e sistemas construtivos frequentemente utilizados no Brasil em projetos de edificação residencial e comercial.

No caso do editor de materiais, cada novo elemento pode ser criado de duas formas. Uma forma mais simples em que só é preciso definir a resistência térmica do elemento $[m^2K/W]$ e uma outra forma mais completa em que é necessário definir 4 propriedades físicas do elemento: espessura (e) [mm], condutividade térmica (λ) [W/m K], densidade de massa aparente (ρ) [kg/m³] e calor específico (c) [J/kg K].

É importante especificar que na primeira forma o programa considera apenas a resistência térmica (R_t) que o elemento oferece à transferência de calor por condução, enquanto que na segunda forma o VisualDOE considera também a capacidade do material para armazenar calor. Assim, para aqueles elementos em que a capacidade térmica (C_t) não seja tão importante quanto sua resistência térmica – câmara de ar, material isolante, etc – podem ser definidos pelo primeiro método.

Depois, o editor de componentes construtivos permite ao usuário editar ou criar elementos como paredes, coberturas e pisos. Estes componentes são formados por camadas de materiais (definidos previamente no editor de materiais). O editor de componentes possui uma interface gráfica que permite ao usuário ver um esquema do elemento enquanto está sendo criado.

3.2. Metodologia para paredes

Neste tipo de componentes, por exemplo, uma parede de concreto maciço com revestimento de argamassa de emboço nos dois lados seria representada por um componente de 3 camadas homogêneas como mostra a Figura 2. A resistência térmica total entre a face interna e externa da parede (sem considerar as camadas de ar superficiais), seria igual à soma das resistências de cada material.

Este esquema de componentes por camadas obriga a utilizar apenas materiais posicionados transversalmente ao fluxo de calor. Porém, para componentes mais complexos, como blocos ou tijolos, onde existem diferentes camadas paralelas aos fluxos de calor (Figura 3), é necessário desenvolver um componente equivalente à parede original.

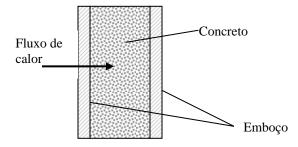


Figura 2. Esquema para componente com camadas transversais ao fluxo de calor.

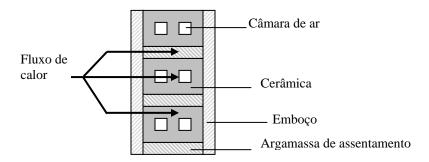


Figura 3. Esquema para componente com camadas transversais e em paralelo.

Para desenvolver o modelo de um componente equivalente a ser inserido na biblioteca do VisualDOE foi adotada uma alternativa em que se variam as espessuras e densidades de massa aparente dos materiais, mantendo-se constante a resistência térmica (R_t) e a capacidade térmica (C_t) entre as superfícies do componente.

O cálculo destas grandezas térmicas (R_t e C_t) segue a metodologia do projeto de norma (ABNT NBR 15220-2, 2003), onde recomenda-se que a resistência térmica de uma camada homogênea de material sólido seja determinada pela expressão 1 e a capacidade térmica destes materiais seja definida pela equação 2.

Onde:
$$R_{t} = \frac{e}{\lambda} \qquad \qquad (1) \qquad \qquad \begin{array}{c} R_{t} : \text{ resistência térmica de superfície à superfície } [\text{m}^{2} \text{ K/W}]} \\ e : \text{ espessura } [\text{m}] \\ \lambda : \text{ condutividade térmica } [\text{W/m K}]} \\ C_{t} : \text{ capacidade térmica } [\text{kJ/m}^{2} \text{ K}]} \\ e_{i} : \text{ espessura da camada i}^{a} [\text{m}]} \\ C_{t} = \sum_{i=1}^{k} e_{i} \cdot c_{i} \cdot \rho_{i} \qquad (2) \qquad \qquad \begin{array}{c} c_{i} : \text{ calor específico da camada i}^{a} [\text{kJ/(kg K)}]} \\ \rho_{i} : \text{ densidade de massa aparente da camada i}^{a} [\text{kg/m}^{3}]} \end{array}$$

No exemplo apresentado na Figura 3, uma solução adequada seria substituir a parte de tijolo (cerâmica) e argamassa de assentamento por uma câmara de ar no meio e duas camadas de material cerâmico com espessura e densidade de massa aparente tais que proporcionem as mesmas propriedades térmicas da parede (Figura 4). Esta alternativa considera sempre uma camada de ar com espessura de 3 cm, ou seja, uma resistência térmica de 0,16 m² K/W (ABNT NBR 15220-2, 2003).

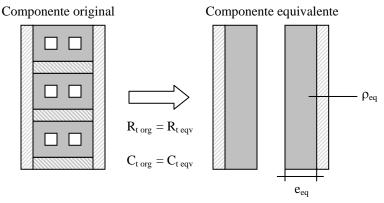


Figura 4. Alternativa de solução para um componente equivalente.

Nos tijolos com furos circulares foi modificada a geometria destes furos para facilitar os cálculos da resistência térmica (R_t) do componente (Figura 5). Seguindo o procedimento descrito no projeto de norma (ABNT 15220-2, 2003), estes furos circulares foram transformados em furos quadrados com área igual à do círculo e com centros coincidentes.

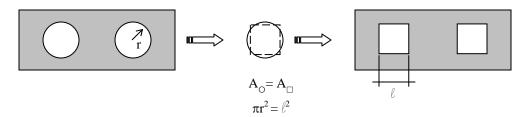


Figura 5. Modificação dos furos circulares em tijolos.

3.3. Metodologia para coberturas

No caso das coberturas, a maioria dos componentes não precisa de um cálculo de materiais equivalentes. No caso particular de cobertura com laje mista, a espessura e a densidade de massa aparente foram modificadas para valores equivalentes utilizando a mesma metodologia adotada para paredes.

O fluxo de calor foi considerado sempre descendente e a espessura da câmara de ar entre as telhas e o forro maior que 5 cm. Isto faz com que a resistência térmica da câmara de ar considerada seja de 0.21m^2 K/W no caso de superfícies com alta emissividade. Quando é colocada uma lâmina de alumínio polido de baixa emissividade sob as telhas (como é descrito no projeto de norma), a resistência térmica da câmara de ar considerada aumenta para 0.61 m^2 K/W.

3.4. Metodologia para pisos

No caso dos pisos entre andares, a maioria dos componentes não precisa de um cálculo de materiais equivalentes. Só no caso de considerar uma laje mista em que ela foi definida igual à das coberturas.

Para os pisos em contato com a terra, o programa exige considerar uma camada de solo dentro dos seus cálculos para poder simular a grande inércia térmica do terreno. Assim, foi incluída uma camada de 46 cm de solo em todas os componentes de piso, como é recomendado pelos próprios criadores do VisualDOE.

3.5. Exemplo de cálculo

Dentro dos componentes incluídos na biblioteca encontram-se todas as paredes e coberturas apresentadas no Anexo C, do projeto de norma de Desempenho Térmico de Edificações (ABNT NBR 15220-3, 2003). Todos os materiais da biblioteca consideram também as mesmas propriedades físicas apresentadas no projeto de norma (Tabelas 1 e 2).

Tabela 1. Propriedades físicas dos materiais usados para definir as paredes.

Material	$\rho (kg/m^3)$	$\lambda \left(W/(m.K) \right)$	c (kJ/(kg.K))
Cerâmica	1600	0,90	0,92
Argamassa de emboço ou assentamento	2000	1,15	1,00
Concreto	2400	1,75	1,00

Tabela 2. Propriedades físicas dos materiais usados para definir as coberturas.

Material	$\rho (kg/m^3)$	λ (W/(m.K))	c (kJ/(kg.K))
Cerâmica	2000	1,05	0,92
Fibro-cimento	1900	0,95	0,84
Madeira	600	0,14	2,30
Concreto	2200	1,75	1,00
Lâmina de alumínio polido (ε< 0,2)	2700	230	0,88
Lã de vidro	50	0,045	0,70

Como exemplo, apresenta-se a metodologia de cálculo usada para obter os valores de espessura e densidade equivalente para uma parede de tijolos de 6 furos quadrados, assentados na menor dimensão, e revestimento de argamassa dos dois lados (Figura 6), a espessura total da parede é de 14 cm.

A resistência térmica de superfície a superfície (R_t) desta parede (sem incluir as resistências superficiais), é de 0,234 m² K/W. O cálculo desta propriedade térmica segue o procedimento descrito no projeto de norma de desempenho térmico de edificações que se encontra amplamente explicado e exemplificado. Como não é o objetivo deste relatório entrar nesses detalhes de cálculo, fica ao leitor o estudo deste procedimento.

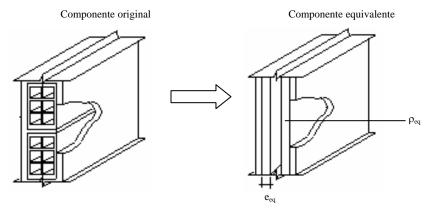


Figura 6. Exemplo de cálculo da espessura e densidade equivalente.

Logo, o cálculo da espessura equivalente da cerâmica é realizado através da equação 3 que mantém a resistência térmica da parede constante. Para estes, como já mencionado, foi considerada uma câmara de ar equivalente de 3 cm, ou seja, com uma resistência térmica de 0,16 m² K/W.

Onde:

 $R_{t} = 0.234 = 2 \cdot \frac{e_{r}}{\lambda_{r}} + 2 \cdot \frac{e_{eq}}{\lambda_{r}} + R_{ar}$ (3)

 R_t : resistência térmica de superfície à superfície $[m^2 \ K/W]$ e_r : espessura de emboço [m] λ_r : condutividade térmica do emboço $[W/m \ K]$ e_{eq} : espessura equivalente [m] λ_c : condutividade térmica da cerâmica $[W/m \ K]$

Rar: resistência térmica da câmara de ar

equivalente [m² K/W]

Substituindo-se os valores na equação 3 vem:

$$0,234 = 2 \cdot \frac{0,025}{1,15} + 2 \cdot \frac{e_{eq}}{0.9} + 0,16$$

Assim, o valor obtido de espessura equivalente é $e_{eq} \approx 1,4$ [cm]

Para complementar o procedimento, a densidade de massa aparente equivalente da cerâmica para esta parede é calculada através da equação 4 mantendo a capacidade térmica do componente, que neste caso é de 159 kJ/m² K. O procedimento de cálculo da capacidade térmica encontra-se explicado com detalhe no projeto de norma (ABNT NBR 15220-2, 2003).

Onde:

 $C_t = 159 = 2 \cdot e_r \cdot c_r \cdot \rho_r + 2 \cdot e_{ea} \cdot c_c \cdot \rho_{ea} \tag{4}$

Substituindo-se os valores na equação 4 vem:

$$159 = 2 \cdot 0.025 \cdot 1 \cdot 2000 + 2 \cdot 0.014 \cdot 0.92 \cdot \rho_{eq}$$

 C_t : capacidade térmica do componente [kJ/m² K] e_r : espessura de emboço [m] c_r : calor específico do emboço [kJ/(kg K)] ρ_r : densidade de massa aparente do emboço [kg/m³] e_{eq} : espessura equivalente [m]

 e_{eq} : espessura equivalente [m] c_c : calor específico da cerâmica [kJ/(kg K)] ρ_{eq} : densidade de massa aparente equivalente [kg/m³]

Assim, o valor obtido de densidade de massa aparente equivalente é $\rho_{eq} \approx 2290 \text{ [kg/m}^3]$

Portanto, para que o componente construtivo original possa ser definido na biblioteca do VisualDOE, sem alterações de suas propriedades térmicas, deve-se montá-lo conforme o componente equivalente da Figura 6, adotando-se uma espessura de material cerâmico equivalente de 1,4 cm e uma densidade de massa aparente equivalente de 2290 kg/m³.

A Figura 7 mostra as janelas da biblioteca de componentes construtivos do VisualDOE. Nelas o usuário tem acesso às propriedades térmicas de cada componente e material. A Figura 7 mostra também o componente equivalente calculado neste exemplo e nela é possível observar que existe uma diferença entre a transmitância térmica (*Ufactor*) calculada pelo programa - 2,6 W/m²K - e a transmitância térmica apresentada no projeto

de norma - 2,48 W/m²K - (ABNT NBR 15220-3, 2003). Esta diferença deve-se ao fato de que o valor apresentado no VisualDOE considera somente a resistência térmica do componente (0,234 m² K/W, no caso do exemplo) e a resistência térmica superficial interna (0,15 m² K/W, valor constante no VisualDOE). No projeto de norma, para calcular a transmitância térmica, são considerados a resistência térmica superficial externa (0,04 m² K/W), a resistência térmica do componente (0,234 m² K/W, neste caso), e a resistência térmica superficial interna (0,13 m² K/W). Embora o VisualDOE não inclua a resistência térmica superficial externa no valor apresentado no *Construction Organizer*, o programa a considera nos seus cálculos de simulação em função dos dados climáticos utilizados. O Anexo A apresenta um resumo das diferencias nas transmitâncias térmicas para todos os componentes da biblioteca.

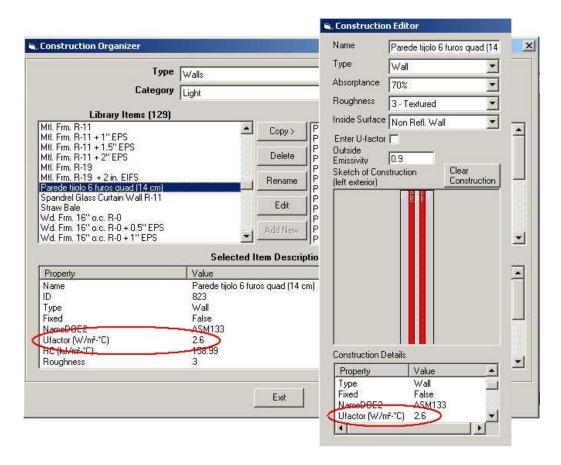


Figura 7: Janelas do VisualDOE apresentando o componente equivalente à parede de tijolos de 6 furos quadrados.

4. Uso e conteúdo da biblioteca

A biblioteca encontra-se dentro do arquivo StandardBrasil2003.gSI como um "*Template*". Um *template* é uma planilha que contém todos os valores por *default* para o projeto. Além da biblioteca de materiais e componentes, este arquivo permite trabalhar na simulação com as unidades do Sistema Internacional.

Para começar a usar a biblioteca, siga os seguintes passos:

- 1. Faça o *download* do arquivo na página do LabEEE e salve-o dentro da pasta de *Templates* do VisualDOE. Geralmente o caminho para esta pasta é C:\ProgramFiles\GDT\VisualDOE\Templates.
- 2. Abra o programa VisualDOE.
- 3. Na barra de ferramentas padrão, entrar em *File* e depois *Open*.
- 4. Aparecerá uma janela na qual o usuário deverá escolher um arquivo para começar.
- 5. Para abrir o arquivo StandardBrasil2003.gSI, siga o caminho GDT\VisualDOE\Templates. Dentro dessa janela, na barra de seleção *Files of type* escolher a opção *All files* (*.*). Assim, o usuário poderá visualizar o arquivo procurado.
- 6. Selecionar o arquivo StandardBrasil2003.gSI e clicar em *Open*.

As Tabelas 3, 4, 5, 6, 7 e 8 apresentam um resumo das propriedades físicas dos materiais considerados para paredes, coberturas, pisos térreos, pisos entre andares, forros e divisórias, respectivamente. Os nomes dos materiais apresentados nestas tabelas seguem a nomenclatura usada na biblioteca. O valor colocado entre parênteses após o nome do material corresponde à espessura do material original.

Dentro do *Construction Organizer*, todas as paredes se encontram em *Walls Light*, todas as coberturas em *Roofs Light*, todos os pisos térreos em *Slabs*, todos os pisos entre andares em *Floors Light*, todos os forros em *Ceilings* e todas as divisórias em *Partitions*.

 ${\bf Tabela~3.~Propriedades~dos~materiais~considerados~nas~paredes~que~formam~a~biblioteca~do~Visual DOE.}$

Nome do material	Espessura equivalente (cm)	Condutividade térmica (W/mK)	Densidade equivalente (kg/m³)	Calor específico (kJ/kg K)	Resistência térmica (m² K/W)
Argamassa de Emboço (2,5 cm)	2,5	1,15	2000	1,00	0,022
Câmara de ar (2 - 5 cm)	-	-	-	-	0,160
Concreto maciço (5 cm)	5,0	1,75	2400	1,00	0,029
Ceram Tijolo Maciço Aparente (10 cm)	9,0	0,90	1800	0,92	0,100
Concreto maciço (10 cm)	10,0	1,75	2400	1,00	0,057
Ceram Tij 6 fur quad (9 cm)	1,4	0,90	2290	0,92	0,016
Ceram Tij 8 fur quad (9 cm)	1,4	0,90	2252	0,92	0,016
Ceram Tij 8 fur circ (10 cm)	3,3	0,90	1103	0,92	0,037
Ceram Tij 6 fur circ (10 cm)	3,0	0,90	1232	0,92	0,033
Ceram Tij 4 fur circ (9,5 cm)	1,3	0,90	3595	0,92	0,014
Ceram Bloc 3 fur quad (13 cm)	1,7	0,90	2941	0,92	0,019
Tijolo Maciço (10 cm)	9,6	0,90	1764	0,92	0,106
Ceram Bloc 2 fur quad (14 cm)	1,5	0,90	3732	0,92	0,017
Ceram Tij 2 fur circ (12,5 cm)	1,7	0,90	3836	0,92	0,019
Ceram Tij 6 fur quad (14 cm)	5,5	0,90	909	0,92	0,061
Ceram Tij 21 fur circ (12 cm)	2,7	0,90	2556	0,92	0,030
Ceram Tij 6 fur circ (15 cm)	6,6	0,90	840	0,92	0,073
Ceram Tij 8 fur quad (19 cm)	8,2	0,90	868	0,92	0,091
Ceram Tij 8 fur circ (20 cm)	11,1	0,90	646	0,92	0,123
Ceram Tij Duplo 6 fur circ (10 cm)	12,8	0,90	628	0,92	0,142
Tijolo Maciço Duplo (10 cm)	19,8	0,90	1812	0,92	0,220
Tijolo Maciço (22 cm)	20,7	0,90	1812	0,92	0,230
Ceram Tij Duplo 21 fur circ (12 cm)	12,3	0,90	1184	0,92	0,137
Ceram Tij Duplo 6 fur circ (15 cm)	20,3	0,90	568	0,92	0,226
Ceram Tij Duplo 8 fur quad (19 cm)	23,4	0,90	613	0,92	0,260
Ceram Tij Duplo 8 fur circ (20 cm)	29,1	0,90	500	0,92	0,323

Tabela 4. Propriedades dos materiais considerados nas coberturas que formam a biblioteca do VisualDOE.

Nome do material	Espessura	Condutividade térmica	Densidade de massa aparente	Calor específico	Resistência térmica
	(cm)	(W/m K)	(kg/m^3)	(kJ/kg K)	$(m^2 K/W)$
Câmara de ar com alta emissividade (> 5 cm)	-	-	-	-	0,210
Câmara de ar com baixa emissividade (> 5 cm)	-	-	-	-	0,610
Telha de barro (1 cm)	1,0	1,05	2000	0,92	0,010
Telha de fibro-cimento (0,7 cm)	0,7	0,95	1900	0,84	0,007
Forro madeira (1 cm)	1,0	0,14	600	2,30	0,071
Forro concreto (3 cm)	3,0	1,75	2200	1,00	0,017
Laje mista (12 cm) *	9,5	1,05	1087	0,92	0,090
Laje de concreto (20 cm)	20,0	1,75	2200	1,00	0,114
Laje de concreto (25 cm)	25,0	1,75	2200	1,00	0,143
Lámina de alumínio polido (e<0,2)	0,1	230,00	2700	0,88	0,000
Lã de vidro (2,5 cm)	2,5	0,05	50	0,70	0,556
Lã de vidro (5 cm)	5,0	0,05	50	0,70	1,111

^{*} A espessura e densidade consideradas na laje mista são valores equivalentes calculados para um material cerâmico

Tabela 5. Propriedades dos materiais considerados nos pisos térreos que formam a biblioteca do VisualDOE.

Nome do material	Espessura	Condutividade térmica	Densidade de massa aparente	Calor específico	Resistencia térmica
	(cm)	(W/m K)	(kg/m^3)	(kJ/kg K)	$(m^2 K/W)$
Solo (45,7 cm)	45,7	0,87	1361	0,8373	0,528
Radier concreto (10 cm)	10,0	1,75	2400	1,00	0,057
Argamassa de reboco (2,5 cm)	2,5	1,15	2000	1,00	0,022
Piso cerâmico (10 mm)	1,0	0,90	1600	0,92	0,011
Piso madeira (10 mm)	1,0	0,14	600	2,30	0,071

Tabela 6. Propriedades dos materiais considerados nos pisos entre andares que formam a biblioteca do VisualDOE.

Nome do material	Espessura	Condutividade térmica	Densidade de massa aparente	Calor específico	Resistencia térmica
	(cm)	(W/m K)	(kg/m^3)	(kJ/kg K)	$(m^2 K/W)$
Laje mista (12 cm) *	9,5	1,05	1087	0,92	0,090
Laje de concreto (20 cm)	20,0	1,75	2200	1,00	0,114
Laje de concreto (25 cm)	25,0	1,75	2200	1,00	0,143
Radier concreto (10 cm)	10,0	1,75	2400	1,00	0,057
Argamassa de reboco (2,5 cm)	2,5	1,15	2000	1,00	0,022
Piso cerâmico (10 mm)	1,0	0,90	1600	0,92	0,011
Piso madeira (10 mm)	1,0	0,14	600	2,30	0,071

^{*} A espessura e densidade consideradas na laje mista são valores equivalentes calculados para um material cerâmico

Tabela 7. Propriedades dos materiais considerados nos forros que formam a biblioteca do VisualDOE.

Nome do material	Espessura (cm)	Condutividade térmica (W/m K)	Densidade de massa aparente (kg/m³)	Calor específico (kJ/kg K)	Resistência térmica (m² K/W)
Painel fibra de madeira isolante	3,5	0,20	850	2,30	0,175
Painel vidro	-	-	-	-	0,610

Tabela 8. Propriedades dos materiais considerados nas divisórias que formam a biblioteca do VisualDOE.

Nome do material	Espessura (cm)	Condutividade térmica (W/m K)	Densidade de massa aparente (kg/m³)	Calor específico (kJ/kg K)	Resistência térmica (m² K/W)
Painel fibra de madeira isolante	3,5	0,20	850	2,30	0,175
Painel vidro	0,8	1,15	2700	0,84	0,007

5. Conclusões

As principais idéias finais obtidas ao término deste trabalho são:

 A adaptação da biblioteca de materiais e componentes para o VisualDOE é um apoio importante para os profissionais que queiram simular o desempenho termoenergético de edificações em situações enquadradas no ambiente nacional.

- Através da metodologia adotada é possível representar materiais e componentes que sejam coerentes com os elementos propostos no projeto de norma para o desempenho térmico de edificações sem alteração suas propriedades térmicas.
- A metodologia definida permite aos profissionais incluir novos materiais e componentes que não estejam na biblioteca e que possam ser necessários em situações específicas.

6. Referências bibliográficas

ABNT NBR 15220-1. **Desempenho Térmico de Edificações** - Parte 1: Definições, símbolos e unidades. Janeiro, 2003.

ABNT NBR 15220-2. **Desempenho Térmico de Edificações** - Parte 2: Métodos de cálculo da transmitância térmica, da capacidade térmica, do atraso térmico e do fator de calor solar de elementos e componentes de edificações. Janeiro, 2003.

ABNT NBR 15220-3. **Desempenho Térmico de Edificações** - Parte 3: Zoneamento Bioclimático Brasileiro e Diretrizes Construtivas para Habitações Unifamiliares de Interesse Social. Janeiro, 2003.

Eley Associates. **VisualDOE 3.0 Program Documentation**. Eley Associates. San Francisco, 2001.

GHISI, E.; GRASSO, P.A. **Tabelas de apoio para a utilização da biblioteca do programa VisualDOE. Relatório interno**. Laboratório de Eficiência Energética em Edificações, Núcleo de Pesquisa em Construção, Departamento de Engenharia Civil. Universidade Federal de Santa Catarina, Florianópolis, 1997.

ANEXOS

ANEXO A: Diferencias entre a transmitância térmica apresentada pelo projeto de norma e o VisualDOE 3.1.

PAREDES

Nome do componente	Espessura (cm)	U Norma (W/m²K)	U VisualDOE (W/m²K)
Parede de concreto maciço	5,0	5,04	5,61
Parede de concreto maciço	10,0	4,40	4,83
Parede de tijolo maciço	10,0	3,70	4,00
Parede de tijolo 6 furos quad. (na menor dim.)	14,0	2,48	2,60
Parede de tijolo 8 furos quad. (na menor dim.)	14,0	2,49	2,60
Parede de tijolo 8 furos circ. (na menor dim.)	15,0	2,24	2,34
Parede de tijolo 6 furos circ. (na menor dim.)	15,0	2,28	2,38
Parede de tijolo 4 furos circ.	14,5	2,49	2,62
Parede de blocos cerâmicos 3 furos	18,0	2,43	2,56
Parede de tijolo maciço (na menor dim.)	15,0	3,13	3,33
Parede de blocos cerâmicos 2 furos	19,0	2,45	2,59
Parede de tijolo 2 furos circ.	17,5	2,43	2,56
Parede de tijolo 6 furos quad. (na maior dim.)	19,0	2,02	2,10
Parede de tijolo 21 furos circ. (na menor dim.)	17,0	2,31	2,42
Parede de tijolo 6 furos circ. (na maior dim.)	20,0	1,92	2,00
Parede de tijolo 8 furos quad. (na maior dim.)	24,0	1,80	1,87
Parede de tijolo 8 furos circ. (na maior dim.)	25,0	1,61	1,67
Parede de tijolo 6 furos circ. Dupla (na menor dim.)	26,0	1,52	1,57
Parede de tijolo maciço dupla (na menor dim.)	26,0	2,30	2,42
Parede de tijolo maciço (na maior dim.)	27,0	2,25	2,36
Parede de tijolo 21 furos circ. Dupla (na menor dim.)	30,0	1,54	1,60
Parede de tijolo 6 furos circ. Dupla (na maior dim.)	36,0	1,21	1,24
Parede de tijolo 8 furos quad. Dupla (na maior dim.)	44,0	1,12	1,14
Parede de tijolo 8 furos circ. Dupla (na maior dim.)	46,0	0,98	1,00

COBERTURAS

Nome do componente	U* Norma (W/m²K)	U VisualDOE (W/m²K)
Cobertura de telha de barro sem forro	4,55	6,80
Cobertura de telha de fibro-cimento sem forro	4,60	6,90
Cobertura de telha de barro com forro de madeira	2,00	2,33
Cobertura de telha de fibro-cimento com forro de madeira	2,00	2,34
Cobertura de telha de barro com forro de concreto	2,24	2,67
Cobertura de telha de fibro-cimento com forro de concreto	2,25	2,69
Cobertura de telha de barro com forro de laje mista	1,92	2,23
Cobertura de telha de fibro-cimento com forro de laje mista	1,93	2,24
Cobertura de telha de barro com laje de concreto de 20 cm	1,84	2,12
Cobertura de telha de fibro-cimento com laje de concreto de	1,99	2,13

20 cm		
Cobertura de telha de barro com laje de concreto de 25 cm	1,75	2,00
Cobertura de telha de fibro-cimento com laje de concreto de		
25 cm	1,75	2,01
Cobertura de telha de barro, lâmina de alumínio polido e forro		
de madeira	1,11	1,21
Cobertura de telha de fibro-cimento, lâmina de alumínio		
polido e forro de madeira	1,16	1,21
Cobertura de telha de barro, lâmina de alumínio polido e forro		
de concreto	1,18	1,29
Cobertura de telha de fibro-cimento, lâmina de alumínio		
polido e forro de concreto	1,18	1,29
Cobertura de telha de barro, lâmina de alumínio polido e forro		
de laje mista	1,09	1,18
Cobertura de telha de fibro-cimento, lâmina de alumínio		
polido e forro de laje mista	1,09	1,18
Cobertura de telha de barro, lâmina de alumínio polido e laje		
de concreto de 20 cm	1,06	1,15
Cobertura de telha de fibro-cimento, lâmina de alumínio		
polido e laje de concreto de 20 cm	1,06	1,15
Cobertura de telha de barro, lâmina de alumínio polido e laje		
de concreto de 25 cm	1,03	1,11
Cobertura de telha de fibro-cimento, lâmina de alumínio		
polido e laje de concreto de 25 cm	1,03	1,11
Cobertura de telha de barro com 2,5 cm de lã de vidro sobre o		
forro de madeira	0,95	1,08
Cobertura de telha de barro com 5,0 cm de lã de vidro sobre o		
forro de madeira	0,62	0,70
* Todos consideram fluxo de calor descendente		

PISOS TÉRREOS

	Nome do componente	U* Norma (W/m²K)	U VisualDOE (W/m ² K)
Fluxo descendente	Piso cerâmica e solo	1,27	1,23
	Piso madeira e solo	1,18	1,15
Fluxo ascendente	Piso cerâmica e solo	1,39	1,23
	Piso madeira e solo	1,28	1,15

^{*} Considerando a resistência superficial interna exclusivamente

PISOS ENTRE ANDARES

	Nome do componente	Espessura (cm)	U* Norma (W/m²K)	U VisualDOE (W/m²K)
Fluxo descendente	Laje concreto e cerâmica	15	2,21	3,29
	Laje concreto e cerâmica	25	1,97	2,77
	Laje concreto e cerâmica	30	1,86	2,57
	Laje concreto e madeira	15	1,95	2,75
	Laje concreto e madeira	25	1,76	2,37
	Laje concreto e madeira	30	1,67	2,22
	Laje mista e cerâmica	17	2,06	2,97
	Laje mista e madeira	17	1,83	2,52
Fluxo ascendente	Laje concreto e cerâmica	15	3,21	3,29
	Laje concreto e cerâmica	25	2,71	2,77
	Laje concreto e cerâmica	30	2,52	2,57
	Laje concreto e madeira	15	2,69	2,75
	Laje concreto e madeira	25	2,33	2,37
	Laje concreto e madeira	30	2,18	2,22
	Laje mista e cerâmica	17	2,90	2,97
	Laje mista e madeira	17	2,47	2,52

^{*} Considerando a resistência superficial interna aos dois lados da laje

DIVISÓRIAS

Nome do componente	U Norma (W/m²K)	U VisualDOE (W/m ² K)	
Painel fibra de madeira isolante	2,90	3,08	
Painel vidro	5,65	6,38	

FORROS

	Nome do componente	U* Norma (W/m²K)	U VisualDOE (W/m²K)
Fluxo descendente	Painel fibra de madeira isolante	1,90	3,2
	Painel vidro	1,04	1,34
Fluxo ascendente	Painel fibra de madeira isolante	2,41	3,2
	Painel vidro	1,18	1,34

 $[\]ast$ Considerando camara de ar não ventilada, com alta emissividade e espessura entre 2 e 5 cm